Hadron - Lepton Strong Interaction
V.G. Plekhanov
- Fonoriton Science Lab., Garon Ltd, Tallinn, 11413 Estonia
- Keywords:
- Energy Band Structure, Electromagnetic Forces, Experimental Manifestation
- Abstract:
- Our present knowledge of physical phenomena distinguishes four type of fundamental forces between the physical bodies: gravitational, electromagnetic weak and strong. The gravitational and the electromagnetic forces vary in strength as the inverse square of the distance and so able to influence the state of an object even at very large distances. Gravitational is important for the existence of stars, galaxes, and planetary systems as well as for our daily life, it is of no significance in subatomic physics, being far too weak to noticeably the interaction between elementary particles. Geomagnetism is the force that acts between electrically charged particles (atoms, molecules, condensed matter). When nuclear physics developed, two new short - ranged forces joined the ranks. It is well - known that the origin of the weak interaction is associated with nuclear decay. After the discovery of the neutron in 1932 by Chadwick, there was no longer doubt that the building block of nuclei are proton and neutron (collectively called nucleons). The discovery of the neutron may be viewed as the birth of the strong nuclear interaction: it indicated that the nuclei consists of protons and neutrons and hence the presence of a force that holds them together, strong enough to counteract the electromagnetic repulsion. In 1935 Yukawa have tried to develop a theory of nuclear forces. The most important feature Yukawa’s forces is that they have a small range ( 1015 m). The central dogma of atomic physics after Yukawa’s paper that proton - electron attraction could be explained in terms of classical electrostatic theory, while the strong force effects were essentially new and inexplicable (see, however below). So, far the best theoretical guess is the Yukawa potential, but it is a static potential not dependent on velocities of the nucleons. A static force is not a complete one because it can not explain the propagation of the nuclear interaction. Moreover, phenomenological Yukawa potential can not be directly verified experimentally. We should note that nowadays in text books and elsewhere the separation of electromagnetic and strong interaction tacitly assumed. It is very strange up to present time we do not even know the strong force very well. And what is more we have some contradiction taking into account that the forces between quarks must be long - range, because the gluons have zero mass. But the force between colorless hadrons is short - range, when the distance between hadrons is more than nuclear size. We can see that the border of the nuclear size transforms long - range interaction in the short - range one. It is very old question which up to present time has not any theoretical explanation
- W.N. Cottingham, D.A. Greenwood, An Introduction to the Standard Model of ParticlePhysics (Cambridge University Press, Cambridge, 2007).
- B. Povh, K. Rith, C. Scholz, F. Zetsche, Particles and Nuclei (Springer – Verlag, Berlin- Heidelberg, 2006).
- V.G. Plekhanov, Isotopes in Condensed Matter (Springer, Heidelberg – Berlin, 2013).
- Ju. M. Shirokov, N. P. Judin, Nuclear Physics (Science, Moscow, 1980) (in Russian).
- S.E. Frish and A.V. Timoreva, Course of General Physics, Vol. 1 (GITTL, Moscow Leningrad, 1949) (in Russian).
- W. Pauli, Theory of Relativity ( Pergamon Press, London, 1958).
- J.P. Elliott and P.G. Dawber, Symmetry in Physics (MacMillan Press LtD, 1979).
- N. Wolchover, Gravitational waves discovered at long last, Quanta Magazine, February 11, 2016.
- C. White, Toward a New Electromagnetic Field Theory (Campaigner Publications,Inc., New York, 1977).
- V.B. Berestesky, E.M. Lifshitz and L.P. Pitaevsky, Relativistic Quantum Theory(Pergamon Press, New York, 1967).
- See, e.g. G. Arfken, Mathematical Methods or Physists (Academic Press, New York,1968).
- P.A.M. Dirac, The Principle of Quantum Mechanics (Oxford University Press, UK,1958).
- M. Gell – Mann and F.E. Low, Quantum Electrodynamics at small distances, Phys.Rev. 95, 1300 – 1312 (1954).
- R.P. Feynman, QED – The Strange Theory of Light and Matter (Princeton University Press, Princeton, 1983).
- W. Weise, Overview and perspectives in nuclear physics, ArXiv/nucl-th/0801.1619 (2008).
- A. Donnachie and G. Shaw (eds.) Electromagnetic Interactions of Hadrons (Springer, New York, 1978).
- K.S. Krane, Introductory Nuclear Physics (Wiley & Sons, New York – Chichester, 1998).
- V.G. Plekhanov, Manifestation and origin of the isotope effect, ArXiv/phys/0907.2024 (2009).
- E.M. Henley, A Garcia, Subatomic Physics (World Scientific Publishing Co., LtD.,Singapore, 2007).
- E. Comay, A theory of weak interaction dynamics, Open Access library Journal 3, e3264 -10 (20016).
- J.D. Walecka, Theoretical Nuclear and Subnuclear Physics (Oxford UniversityPress, New York, 1995).
- Y.S. Kim, Einstein, Wigner, and Feynman: From E mc2 to Feynman’s decoherence via Wigner little groups, ArXiv/quant-ph/0304097 (2003).
- D. Vretenar and W. Weise, Exploring the nucleus in the context of low – energyQCD, Lecture Notes Phys. 641, 65 – 117 (2004).
- I.M. Dremin, A.B. Kaidalov, Quantum chromodynamics and the phenomenology of strong interaction, Phys – Uspekhi 49, 263 – 273 (2006).
- E. Segre, Nuclei and Particles: An introduction to Nuclear and Subnuclear Physics,Second Ed. (Addison Wesley Publishing Co., New York, 1977).
- H. Yukawa, On the interaction of elementary particles, I, Proc. Phys. – Mat. Soc.(Japan) 17, 48 – 57 (1935).
- G.A. Miller, A.K. Oper, E.J. Stephenson, Charge symmetry and QCD, Annual Rev.of Nuclear and Particle Science, 56, 253 – 294 (2006).
- G.A. Miller, Charge density of neutron and proton, Phys. Rev. Lett. 99, 112001 – 4 (2007).
- V.G. Plekhanov, The enigma of the mass, ArXiv/phys./0906.4408 (2009).
- G. Leibfried, Gitter Theorie der Mechanischen und Thermalischen Eigenschaften derKristall, Handbuch der Physik, Bd. VII/1 (Springer, Berlin, 1955).
- A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton UniversityPress, New Jersey, 1957).
- S.D. Bass, The Spin Structure of the Proton (World Scientific, Singapore, 2007).
- C.A. Aidala, S.D. Bass, D. Hasch et al., The spin structure of the nucleon, Rev. Mod.Phys. 85, 655 – 691 (2013).
- J.J. Kelly, Nucleon charge and magnetization densities from Sachs form factors, Phys. Rev. C66, 065203 – 065206 (2002).
- A. Martin, History and spin statistics, ArXiv/hep – ph/0209068 (2002).
- A.B. Migdal, A Qualitative Methods in Quantum Theory (Science, Moscow, 1975) (inRussian).
- H. Goldstein, Classical Mechanics (Addison – Wesley, MA, 1959).
- E. Schrödinger, Quantisierung als Eigenwertprobleme, Ann. Physik 81, 109 – 139 (1926).
- V.G. Plekhanov, Isotope Effect: Origin and Application (PALMARIUM Academic Publishing, Saarbrücken, Deutschland, 2014) (in Russian).
- O. Klein, Quantentheorie and fülddimensionfle relativätstheorie, Zs. Physik 37, 895 906 (1926).
- V. Fock, Zur Schrödingerschen Wellenmechanik, ibid 38, 242 – 250 (1926).
- W. Gordon, Der Comptoneffekt nach der Schrödingerschen theoris, ibid 40, 117 133 (1926).
- I.E. Tamm, The Theory of Electricity (GITTL, Moscow, 1957) (in Rissian).
- W. Greiner, J. Reinhardt, Quantum Electrodynamics (Springer, Berlin, 2003).
- F. Gross, Quantum Mechanics and Field Theory (Wiley – VCH Verlag, Weinheim, 2004).
- P.A.M. Dirac, The quantum theory of electron, Proc. Roy. Soc. (London) 117, 601 623 (1927); ibid 118, 351 – 361 (1928).
- F. Halzen, A.D. Martin, Quarks and Leptons: An Introductory Course in ModernParticle Physics (J. Wiley and Sons, New York, Chichester, 1984).
- P.A.M. Dirac, Lectures on Quantum Field Theory (Published by Yeshiva University,New York, 1967).
- S. – i Tomonaga, The Story of Spin (The University of Chicago Press, Chicago & London, 1997).
- J. Roch, What is mass, Eur. J. Phys. 26, 225 – 242 (20050.
- L. – C. Tu, J. Luo, and G.T. Gilles, The mass of photon, Rep. Prog. Phys. 68, 77 130 (2005).
- P.W. Miloni, The Quantum Vacuum (Academic Press, Boston, New York, 1994).
- F.J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev. 85, 631 – 633 (1952).
- A. Deur, S.J. Brodsky and G.F. Toramond, The QCD running coupling, Progress inParticle and Nuclear Physics 90, 1 – 74 (2016).
- D.H. Perkins, Introduction to High Energy Physics (Cambridge University Press,Cambridge, 2000).
- F.E. Close, An Introduction to Quarks and Partons (Academic Press, London, NewYork, 1979).
- H. Fritzsch and M. Gell – Mann, Current algebra: quarks and what else? in, Proc. XVIInt Conf. High energy physics, Chicago, 1972, vol. 2, p. 135 – 156.
- R. Utiyama, Invariant Theoretical Interpretation of Interaction, Phys. Rev. 101, 1597 – 1608 (1956).
- P. Langancker, Structure of the Standard Model, ArXiv/ hep – ph/ 0304186 (2003).
- S. Bethke, Experimental tests of asymptotic freedom, Prog. Part. Nucl. Phys. 58, 351 – 386 (2007).
- K. Gottfried, V.F. Weisskopf, Concepts of Particle Physics, Vol. 1 (Clarendon Press,Oxford, New York, 1984).
- S. Bethke, Determination of the QCD coupling s, J. Phys. G. 26, R27 – R76 (2000).
- G. Altarelli, The QCD running coupling and its measurements, in, Proc. CorfuSummer Institute and Workshops on Elementary Particle Physics and Gravity, ArXiv: hep ph/1303.6065 (2013).
- G. Altarelli, Collider Physics within the Standard Model: a Primer, ArXiv: hep – ph/1303. 2842.
- S. Gasiorowicz, Quantum Mechanics (J. Wiley & Sons Ltd, Chichester, 1974).
- C.D. Froggatt, The origin of mass, Surveys High Energ. Phys. 18, 77 – 99 (2003).
- H. Georgi, S.L. Glashow, Unity of all elementary – particle forces, Phys. Rev. Lett.
- , 438 – 441 (1974).
- B.L. Ioffe, QCD at low energy, Prog. Part. Nucl. Phys. 56, 232 – 277 (2006).
- S.F. Novaes, Standard Model: An Introduction, ArXiv/ hep – ph/ 0001383 (2000).
- S. Weinberg, The making of the Standard Model, ArXiv/ hep – ph/ 0401010 (2004).
- C.D. Frogatt, H.B. Nielsen, Trying to understand the Standard Model, ArXiv/0308144 (2003).
- C. Burgess, G. Moore, Standard Model – A Primer (Cambridge University Press,Cambridge, 2006).
- S. Weinberg, The Discovery of Subatomic Particles (Freeman, New York, 1983).
- O.W. Greenberg, A new level of structure, Phys. Today 38, 22 – 30 (1985).
- M. Arghirescu, The Cold Genesis of Matter and Fields (Science Publishing Group,New York, 2015).
- D. Griffiths, Introduction to Elementary Particles (Wiley – VCH Verlag, Chichester,2008).
- S. Gottlieb, A. Krasnitz, U.M. Heller et al., Thermodynamics of lattice QCD with twolight quarks on a 163 x 8, Phys. Rev. D47, 3619 – 3627 (1993).
- U. Heinz, M. Jacob, Evidence for a new state of matter; an assessment of theresults from CERN lead beam programme, CERN preprint nucl – th/ 0002042 (2000).
- I.S. Gradstein and I.M. Ryzhik, Tables of Inegrals,, Sum, Series and Products(Science, Moscow, 1971) (in Russian).
- F.W.Dyson, A.S. Eddington and C. Davidson, A determination of the deflection oflight by the Sun’s gravitational fields, from observations made at the total eclipse of May 29, 1919, Phil. Trans. Roy. Soc. (London) A 220, 291 – 333 (1920).
- H.A. Wilson, An electromagnetic theory of gravitation, Phys. Rev. 17, 54 – 59 (1921).
- A.D. Sakharov, Vacuum quantum fluctuation in curved space and the theory ofgravitation, Sov. Phys. Dokl. 12, 1040 – 1041 (1968).
- F.O. Barut, Unification based on electromagnetism, Annalen Phys. (Leipzig) 498 , 83 – 92 (1986).
- J. Buitrago, Unified picture of electromagnetic and gravitational forces in two – spinorlanguage, Results in Physics 16, 102859 – 4 (2020).
- Ling Jun Wang, Unification of gravitational and electromagnetic fields, EdelweissApplied Science and Technology, 4, 9 – 18 (2020).
- V.G. Plekhanov, Non – accelerator observation of the long – range strong nuclearineraction, J. Phys. and Opt. Sci., 2, 1 – 5 (2020).
- G. Gamow, Zur quantentheorie des atomkerns, Zs. Physik 51, 204 – 212 (1928).
- E. Fermi, Tentatiro di una theoria dei raggi bets, Il Nuovo Cimento, 9, 1 – 5 (1934).
- V.G. Plekhanov and J.G. Buitrago, Evidence of residual strong interaction in nuclearatomic level via isotopic shif in LiH – LiD crystals, Prog. Phys. 15, 68 – 71 (2019).
- L.D. Landau, About fundamental problems, in, Selected Papers, Vol. 2 (Science,Moscow, 1969) 421 – 424 (in Russian).
- Ling Jun Wang, Unification of Gravitational and Electromagnetic Forces (Schloar’spress, USA, 2019).
- A. H. Compton, The size and shape of the electron, Phys. Rev. 14, 247 – 259 (1919).
- E. Schrödinger, Über die kraftfree bewegung in der relativischen Quantenmachanik,Sitzungsber. Preuss. Akad. Wiss. Phys. Math. KI. 24, 418 – 428 (1930).
- K. Huang, On the zitterbewegung of the Dirac electron, Amer. J. Phys. 20, 479 – 484 (1952).
- D. Hestens, The zitterbewegung interpretation of Quantum Mechanics, Found. Phys. 20, 1213 – 1232 (1990).
- D.W. Sciama, On the origin of intertia, Roy. Astron. Soc. 113, 34 – 42 (1953).
- F.J. Vil’f, Once More about the Spin of the Point – like Particle, and Dirac’s Equation(Editorial, URSS, Moscow, 2002) (in Russian).
- O. Consa, Helical Solenoid model of the electron, Prog. Phys. 14, 80 – 89 (2018).
- V.G. Plekhanov, Measurements of the wide value range of strong interaction coupling constant, SSRG – IJAP 6, 32 – 37 (2019).
Published
- February 14, 2021
Categories
Copyright
- Copyright (c) 2021 V.G. Plekhanov
License
This work is licensed under a Creative Commons Attribution 4.0 International License.