

DOI: 10.14738/tmlai.26.783
Publication Date: 21th December, 2014
URL: http://dx.doi.org/10.14738/tmlai.26.783

Comparison of Metaheuristic Algorithms for Evolving a Neural

Controller for an Autonomous Robot

1Sergii Zhevzhyk and 2Wilfried Elmenreich
Institute of Networked and Embedded Systems, Alpen-Adria Universität Klagenfurt, Klagenfurt, Austria;

1sergii.zhevzhyk@aau.at; 2wilfried.elmenreich@aau.at

ABSTRACT

Evolutionary algorithms are a possible way to automatically design the behavior of autonomous robots.

In this paper we compare different evolutionary algorithms (EA), namely simple EA, two dimensional

cellular EA, and random search, according to their performance in a simple simulation, where a

phototaxis robot with two sensors of limited range has to find a light source in a closed area. In our

experiments we studied the effects on performance of EA parameters, such as population size and

number of generation. The results explain how the choice of the neural network (three-layered or fully-

connected) may influence the quality of a final solution.

Our findings indicate that acceptable results can be achieved using all EAs but not with random search.

The utilization of a fully-connected neural network allows achieving better results for all EAs as

compared to a three-layered neural network. Two dimensional cellular EA and simple EA evolve the best

strategies for a robot’s behavior which allow the robot to reach the light source in almost all cases.

Keywords: Evolutionary algorithm; neural network; robot simulation.

1 Introduction

One way to create a control system for an autonomous robot is to apply an evolutionary approach for

evolving a neural controller. EAs can be used to solve different problems especially in machine learning

and function optimization domains [13], [17], [20]. A lot of performed experiments with evolving of

adaptive behavior confirm that evolutionary algorithms can generate a number of successful system

controllers [17], [9], [10]. In this work we compare three metaheuristic algorithms (simple EA, two

dimensional cellular EA, and random search) in their ability to discover the most apt neural controller for

a phototaxis robot.

The idea of using natural selection for evolving of control systems for robots was proposed by Turing in

1950s. In the next decades a set of metaheuristic algorithms have been developed [12], [15], but the

actual usage of these algorithms started after 1990 by the continuous improvement of computer

technology and the advent of evolutionary robotics [5]. A large number of EAs causes a need for a

generally accepted methodology that allows comparing different EAs and exploring which parameters

significantly affect performance [6]. Comparison of EAs on theoretical level was carried out by He and

Yao applying Markov chains [14]. Empirical studies in this field were done by De Jong [7] and by Schaffer,

et al. [19]. Their works are mostly applied to genetic programming. In our study we compare

mailto:fraa_athher@gbu.edu

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 63

metaheuristic algorithms for evolving a neural controller. Czarn mentioned that the results of theoretical

work may not comply with practical outcomes [6]. Therefore, here we focus on practical experiments

and analysis of these results.

Programming a controller for a robot can become a challenging task because of algorithm complexity,

processing of results from sensors, and actuator modeling [9]. A possible way to overcome this issue is

to use an evolutionary algorithm to design a neural controller. Applying this approach raises the issue of

selecting an appropriate metaheuristic algorithm and its settings since it can have a significant impact on

the quality of the evolved behavior.

The purpose of this paper is to compare metaheuristic algorithms applicable to designing the behavior

for an autonomous robot. Robot simulation provides a convenient test bed to compare the performance

of differently evolved control algorithms. We used a computer simulation as application of

metaheuristic algorithms. We defined a simple computer simulation of an autonomous robot, its neural

controller and the environment. The simulation of the robot is based on the former experiment we used

in [18] for comparing the evolvability of ANNs and Finite State Machines. The main objective is to

compare different metaheuristic algorithms and determine dependencies (e.g., population size, number

of generations) which may have an impact on performance. This knowledge can be helpful in selection

of an appropriate evolutionary approach in future research. Section 2 of this paper provides background

about evolutionary algorithms and briefly describes simple EA, two dimensional EA, and random search.

Section 3 defines the problem definition and specifies configurations of the conducted experiments. In

Section 4 we examine the results of EAs evaluations. Section 5 concludes the paper.

2 Evolutionary Algorithms

In the past decades a large number of evolutionary algorithms were presented, but in general they are

united by the same idea: a population with limited resources competing for resources, therefore

activating natural selection. Algorithm 1 shows a generalized functioning scheme of evolutionary

algorithms. They work with a pool of candidates, each described by a candidate’s genotype. The initial

population is filled either with randomly generated representations or with candidates which are

specifically adapted for this problem. A parameter N denotes the population size in the evolutionary

algorithms.

Algorithm 1: General algorithm of EA.

Operators of variation (recombination, mutation) and selection are the two forces that drive evolution

forward. The main role of variation operators is the generation of new candidates for the next

evolutionary steps. Selection is used to choose individual genomes from the population for later

breeding. The fitness function is a result of the candidates’ evaluation in one or multiple simulation runs

Sergii Zhevzhyk, Wilfried Elmenreich; Comparison of Metaheuristic Algorithms for Evolving a Neural Controller for

an Autonomous Robot. Transactions on Machine Learning and Artificial Intelligence. Volume 2 No 6 Dec, (2014);

pp: 62-76

URL:http://dx.doi.org/10.14738/tmlai.26.783 64

and allows to measure a quality of a genotype [8]. The quality of a final solution for an evolutionary

algorithm strongly depends on matching of representations, variation operators, and fitness function

[11].

2.1 Simple EA

A simple EA is the reflection of the generalized scheme of evolutionary algorithms. Appropriate

solutions are achieved through application of variation operators (crossover, mutation) and selection of

the most fitted individuals. To use this algorithm, the parameters ρe, ρr, ρm, ρc, respectively representing

the rate of elite candidates, the rate of randomly selected individuals, the rate of representations for

mutation, and the rate of candidates as results of crossover, should be defined. Based on these

parameters and known size of the population N, we calculate the number of elite candidates, the

number of randomly selected representations, the number of individuals for mutation, the number of

candidates for breeding, which are stored in the parameters ne, nr, nm, and nc, respectively.

Algorithm 2: The above pseudo-code outlines the algorithm of simple EA.

http://dx.doi.org/10.14738/tmlai.26.783

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 65

Typically, the elite candidates in a population having the highest fitness value are selected for the next

generation. Accordingly, their offspring, as results of crossover and mutation, take the places of the less

fit representations. However, a small percentage of individuals not belonging to the elite can also be

selected to the next generation, because of their property or characteristic in their structure might be

useful in the next generation. Moreover, non-elite candidates allow increase diversity of the population

and thus increment a number of different unique solutions. Algorithm 2 is describing the

implementation of simple EA.

2.2 Cellular EA

A cellular EA (cEA) [23] is a kind of evolutionary algorithms, in which the population is placed in a

toroidal two dimensional space. Candidates can only communicate with their neighbors, what

corresponds to the behavior of individuals in nature. There are many models of neighborhoods for cEA,

such as Von Neumann (linear) neighborhood, Moore (compact) neighborhood, diamond neighborhood

and others [16]. Usage of different models can lead to completely different strategies. In our

experiments we use only Moore neighborhood with radius one, which means that only the closest

neighbors are taken into consideration. The neighborhood R also includes the central candidate for

which we calculate the neighborhood. In this evolutionary algorithm the parameters ρe, ρm, ρc, which

respectively denote the rate of elite individuals, the probability of mutation, and the probability of

crossover, are applied for the neighborhoods. The number of elite candidates ne is calculated from ρe

and the neighborhood size. Algorithm 3 shows the pseudo-code for a cellular EA.

Algorithm 3: The above pseudo-code outlines the algorithm of cellular EA

Sergii Zhevzhyk, Wilfried Elmenreich; Comparison of Metaheuristic Algorithms for Evolving a Neural Controller for

an Autonomous Robot. Transactions on Machine Learning and Artificial Intelligence. Volume 2 No 6 Dec, (2014);

pp: 62-76

URL:http://dx.doi.org/10.14738/tmlai.26.783 66

2.3 Random search

Random search finds a solution using an undirected search (see Algorithm 4). In each generation, all

candidates of the population are replaced with randomly generated candidates, which are subsequently

evaluated. A single candidate that has the highest fitness value is kept for the next generation. If the

search space is small and the number of evaluations, i.e. generations times population size, is

comparably high, then this algorithm has a chance to pick an acceptable solution. In case of large search

space this chance goes down. Compared to other algorithms, random search does not try to improve

candidates via mutation or crossover, therefore it can be treated as an undirected search. The random

search approach gives a reference for the size of the search space.

Algorithm 4: The above pseudo-code outlines the algorithm of random search.

3 Experiment Setup

3.1 Physical setup

Figure 1 sketches the simulation setup of our phototaxis robot searching for a light source. The testbed

for our robot is a closed quadratic room. The start position is in the center of this room. The position of

the light source is outside a restriction circle with the central point in the center of the room. The

restriction circle prevents a finding of the light on the first steps. All environment settings are shown in

Table 1.

For our experiments we used a differential wheeled robot with configuration described in Table 2. It has

2 sensors to detect whether the distance to the light source is within their sensing range.

Table 1: Configuration of the environment.

Parameter name Parameter value

Width of the field 200 cm

Diameter of the light source 10 cm

Radius of the restricting circle 80 cm

Table 2: Robot configuration parameters.

Parameter name Parameter value

Diameter of the robot 10 cm

Diameter of the wheels 5 cm

Range of the sensors 70 cm

Angle of the sensor vision 45˚

Maximum speed 12 cm/s

http://dx.doi.org/10.14738/tmlai.26.783

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 67

Figure 1: An autonomous robot is looking for the light source in the closed area.

3.2 Fitness function

The main task of the robot is to reach its target in a minimal amount of movements – on this basis we

implemented the fitness function as in Equation 1.

Pt is the reward for a successful strategy allowing to reach the target (see Equation 2). The value Ps

shows how close the robot is to the target at the end of simulation (see Equation 3). This value is

especially important in the beginning of an evolution to teach the robot to come closer to the light and

finally reach it. The maximum range of the robot’s sensors is represented as parameter r. The distance is

encoded in parameter d in case the robot senses the light. Finally, Equation 4 represents how fast the

robot can reach the target. The value m represents the maximum amount of time steps in the

simulation. The number of time steps that is required to reach the target for the selected strategy is

defined as l. Coefficients kt, ks and kl describe the influence of Pt, Ps, and Pl on the fitness value. In our

work they have been set to the following values:

kt = 0:3; ks = 0:3; kl = 0:4

The fitness function is designed in a way that all possible fitness values should lay in the range [0;1]. The

maximum number of time steps for our experiments is 300.

3.3 Evolvable control system

The robot was controlled by an ANN. In our simulations we used two different representations: a fully-

connected ANN and a three-layered ANN.

The three-layered neural network is a time-discrete ANN which has a feed-forward structure. It means

that each neuron of the input layer is connected to each neuron of the hidden layer which at the same

Sergii Zhevzhyk, Wilfried Elmenreich; Comparison of Metaheuristic Algorithms for Evolving a Neural Controller for

an Autonomous Robot. Transactions on Machine Learning and Artificial Intelligence. Volume 2 No 6 Dec, (2014);

pp: 62-76

URL:http://dx.doi.org/10.14738/tmlai.26.783 68

time is connected to each neuron of the output layer. The fully-connected neural network is a discrete-

time and recurrent ANN. Instead of feed-forward structure of three-layered neural network, each

neuron of the fully-connected neural network is connected to every other neuron and itself, thus

making it a recurrent artificial neural network [24]. A recurrent network can retain information about

the past, but in general is hard to train [25]. In our case, the training of the two network types follows

the same approach of mutating and recombining a genome consisting of weights and biases of the ANN.

A fully-connected neural network has a larger search-space whereas it employs more connections

between neurons. At the same time this feature and presence of recurrent connections might help to

achieve more sophisticated behavior.

The number of inputs and the number of outputs are the same for both candidates. Two inputs which

represent distances measured by sensors are connected to the input neurons. From two output neurons

we receive information about the speed of robot’s wheels. With regard to the number of neurons in the

hidden layer, there is no straightforward way to determine the optimal number of hidden neurons

analytically. The optimal number depends on the complexity of the function to be approximated, and,

therefore, indirectly on the number of input and output nodes. Besides a trial and error approach, there

are some empirically derived rules-of-thumb, of these, the most commonly relied on is the optimal size

of the hidden layer is usually between the size of the input and size of the output layers [2]. Swingler

[22] and Berry [1] propose a maximum of two times the number of input nodes for the hidden nodes.

Boger and Guterman [3] suggest that the number of hidden nodes should be 70%-90% of the number of

input nodes. Caudill and Butler [4] recommend that the number of hidden nodes should be two third of

the sum of input and output nodes. Since determining the optimal number of hidden nodes for a

problem is outside the scope of this paper, we have chosen two hidden nodes in accordance with most

of the rules of thumb given above.

In our experiments we apply metaheuristic algorithms to train these networks. The main idea of this

training is to optimize the weights wji, where j represents the neurons which have incoming connection

to i, and the bias bi of each neuron i in the ANNs. We calculate the output of the neuron for step k by

applying an activation function F:

where the sigmoid function is employed as activation function F:

3.4 Experiment parameters

All experiments are developed using the FREVO tool [21] which has a workflow for the selection of

building blocks (problems, representations, evolutionary algorithms and ranking systems) and provides

an easy setup for all necessary settings.

Settings of evolutionary algorithms have a huge impact on results of experiments. Information about

used configurations is specified in tables 3 and 4.

http://dx.doi.org/10.14738/tmlai.26.783

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 69

We conducted a set of experiments with 2000, 5000, 10000, and 100000 evaluations. For each of these

values we run experiments 100 times with different initial seeds in order to get sufficient statistical data.

The results obtained from these experiments allow to watch an evolutionary process in detail. To check

how the number of candidates in the population influences the results of evolutionary algorithms, we

used the following population sizes: 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, which are the

squares of natural numbers. This is the requirement of cellular EA that builds a toroidal two dimensional

space. The number of evaluations equals the population size multiplied by the number of generations.

Table 3: Settings of simple EA.

Name Value

Elite rate 0.1

Mutation rate 0.6

Crossover rate 0.1

Renew rate 0.1

Random selection rate 0.1

Mutation severity 0.3

Mutation probability 0.3

Table 4: Settings of cellular EA.

 Name Value

Elite rate 0.1

Probability of elite mutation 0.6

Probability of elite crossover 0.1

Renew probability 0.2

Mutation severity 0.3

Mutation probability 0.3

4 Experiment Setup

We have conducted a set of experiments on evolving the autonomous robot controller using different

evolutionary algorithms. Since the runtime of the simulation accounts for the majority of time spent for

evaluating solutions, we specified a given number of evaluations for each experiment. Figure 2 depicts

the results after 2000 evaluations, which corresponds to a rather short time of evolution. Thus, this

figure indicates which algorithm and parameter setting is preferable if there is no possibility for

extensive simulation, e.g., there is a limit on run time. The fitness values (ranging from 0 to 1, according

to the definition in Section III) show a large dispersion of results. The values for random search mark an

inefficient algorithm, while cellular EA and simple EA show comparable good results for short time of

evolution.

Sergii Zhevzhyk, Wilfried Elmenreich; Comparison of Metaheuristic Algorithms for Evolving a Neural Controller for

an Autonomous Robot. Transactions on Machine Learning and Artificial Intelligence. Volume 2 No 6 Dec, (2014);

pp: 62-76

URL:http://dx.doi.org/10.14738/tmlai.26.783 70

Figure 2: Box-and-whisker diagrams of the fitness values after 2000 evaluations for (a) three-layered ANN and
(b) fully-connected ANN.

Figure 3 shows the results after 5000 evaluations which yield better fitness values than after 2000

evaluations. The relative effectiveness of the algorithms stayed the same.

Figures 4 and 5 extend the number of evaluations towards 10000 and 100000, respectively. The latter

corresponds to a case where sufficient simulation time is available and the question shifts from which

algorithm provides good results the fastest? to which algorithm provides the best results if we wait long

enough?. The fitness values are more gathered after 100000 evaluations, but the performance of

evolved controllers is good enough. The difference in terms of efficiency of neural networks after 10000

and 100000 evaluations is negligible compared to waiting time.

http://dx.doi.org/10.14738/tmlai.26.783

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 71

Figure 3: Box-and-whisker diagrams of the fitness values after 5000 evaluations for (a) three-layered ANN and
(b) fully-connected ANN.

We can see that fully-connected ANN performs better than three-layered ANN employing all

evolutionary algorithms, but with increasing number of evaluations this difference becomes

insignificant.

Sergii Zhevzhyk, Wilfried Elmenreich; Comparison of Metaheuristic Algorithms for Evolving a Neural Controller for

an Autonomous Robot. Transactions on Machine Learning and Artificial Intelligence. Volume 2 No 6 Dec, (2014);

pp: 62-76

URL:http://dx.doi.org/10.14738/tmlai.26.783 72

Figure 4: Box-and-whisker diagrams of the fitness values after 10000 evaluations for (a) three-layered ANN and
(b) fully-connected ANN.

4.1 Evaluation of Significance

Considering that the results from the simulations are affected by random factors it is not so easy to

affirmatively define which algorithm and settings work better and which show similar performance. To

answer this question we model the fitness values for the two algorithms as two independent events – X

for cEA and Y for simple EA:

),(~ 2

XXNX  ,

),(~ 2

YYNY  ,

where X , Y are means and
2

X ,
2

Y are estimated variances of results measured using multiple

simulation runs with different random seeds.

http://dx.doi.org/10.14738/tmlai.26.783

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 73

Figure 5: Box-and-whisker diagrams of the fitness values after 100000 evaluations for (a) three-layered ANN and
(b) fully-connected ANN.

In the next step, we calculate the difference between two events:

),(~),(),(~~),(~ 22222

XYXYXXYYZZ NNNYXNZ   (7)

In order to compare cEA and simple EA, we calculate a chance, that probability of Z is less than 0:

)
2

(
2

1
)0(

Z

ZerfcZP



 (8)

The probability)0(ZP corresponds to the probability that cEA is better than simple EA. The

probability that simple EA is better than cEA can be obtained using Equation 9.

)0(1)0( ZPZP (9)

Figure 6 shows the difference between calculated probabilities)0(ZP and)0(ZP , which at the

same time allows observing how cellular EA is better than simple EA. The trends for different neural

networks vary. Cellular EA employing three-layered ANN works better than simple EA for larger number

of evaluations. For fully-connected ANN simple EA works better for small number of evaluations and

with increasing number of evaluations this difference becomes insignificant. Figure 6 points that for

Sergii Zhevzhyk, Wilfried Elmenreich; Comparison of Metaheuristic Algorithms for Evolving a Neural Controller for

an Autonomous Robot. Transactions on Machine Learning and Artificial Intelligence. Volume 2 No 6 Dec, (2014);

pp: 62-76

URL:http://dx.doi.org/10.14738/tmlai.26.783 74

fully-connected ANN cellular EA provides better results than simple EA. If we employ three-layered

ANNs, the cellular EA also dominates over simple EA with a few exceptions.

(a) (b)

Figure 6: Prevalence of cellular EA compared to simple EA for different neural networks: a) three-layered ANN;
b) fully-connected ANN.

5 Conclusion

Two dimensional cellular EA and simple EA show acceptable results in evolving behavioral designs of an

autonomous robot. Examination of outcome robot strategies using these algorithms shows that the light

source can be found in the vast majority of experiments. Achieved performance results using different

evolutionary algorithms demonstrate efficiency of metaheuristic approach for evolving of an

autonomous robot.

The results of the experiments help to determine, that cEA and simple EA are the most applicable for

evolving a neural controller. A fully-connected ANN outperforms three-layered ANN in all conducted

experiments. Based on our findings, we recommend to use cEA and fully-connected ANN for problems

that require short evaluation phase. For a large number of generations and population size the

efficiency of both algorithms are approximately the same. In the experiments we measured an influence

of population size and number of generations on performance of metaheuristic algorithms. The

dependencies on these parameters are negligible. This information is important for the conduction of

experiments. To accelerate a simulation, the population size should be the same as the number of cores

on the server, where these experiments will be performed.

In future work we are planning to validate our results for different application scenarios and to extend

our analysis to further parameters, for instance, mutation and crossover rate.

ACKNOWLEDGEMENT

This work was performed in the research cluster Lakeside Labs funded by the European Regional

Development Fund, the Carinthian Economic Promotion Fund (KWF), and the state of Austria under

grant 20214—21532—32604 (Project MESON) and 20214—22935—34445 (Project Smart Microgrid

Lab). We would like to thank A. Monacchi for the feedback.

http://dx.doi.org/10.14738/tmlai.26.783

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 75

REFERENCES

[1]. M. Berry and G. Linoff. Data Mining Techniques: For Marketing, Sales, and Customer Support.

Database management / Wiley. Wiley, 1997.

[2]. A. Blum. Neural Networks in C++: An Object-Oriented Framework for Building Connectionist

Systems. Wiley, 1 edition, 5 1992.

[3]. Z. Boger and H. Guterman. Knowledge extraction from artificial neural network models. In

Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE

International Conference, volume 4, pages 3030–3035 vol.4, 1997.

[4]. M. Caudill and C. Butler. Understanding Neural Networks; Computer Explorations. MIT Press,

Cambridge, MA, USA, 1992.

[5]. D. Cliff, P. Husbands, and I. Harvey. Explorations in evolutionary robotics. Adaptive Behavior,

2(1):73–110, 1993.

[6]. A. Czarn, C. MacNish, K. Vijayan, B. Turlach, and R. Gupta. Statistical exploratory analysis of

genetic algorithms. Evolutionary Computation, IEEE Transactions, 8(4):405–421, 2004.

[7]. K. A. De Jong. Analysis of the behavior of a class of genetic adaptive systems. 1975.

[8]. A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer, 2007.

[9]. W. Elmenreich and G. Klingler. Genetic evolution of a neural network for the autonomous

control of a four-wheeled robot. In A. Gelbukh and A. F. Kuri Morales, editors, Sixth Mexican

International Conference on Artificial Intelligence, pages 396–406. IEEE Computer Society,

2007.

[10]. D. Floreano and L. Keller. Evolution of adaptive behaviour in robots by means of darwinian

selection. PLoS biology, 2010.

[11]. D. Fogel. What is evolutionary computation? Spectrum, IEEE, 37(2):26–28, 2000.

[12]. L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence Through Simulated Evolution. John

Wiley & Sons, 1966.

[13]. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[14]. J. He and X. Yao. From an individual to a population: An analysis of the first hitting time of

population-based evolutionary algorithms. Evolutionary Computation, IEEE Transactions,

6(5):495–511, 2002.

Sergii Zhevzhyk, Wilfried Elmenreich; Comparison of Metaheuristic Algorithms for Evolving a Neural Controller for

an Autonomous Robot. Transactions on Machine Learning and Artificial Intelligence. Volume 2 No 6 Dec, (2014);

pp: 62-76

URL:http://dx.doi.org/10.14738/tmlai.26.783 76

[15]. J. H. Holland. Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control, and artificial intelligence. U Michigan Press, 1975.

[16]. J. Kari. Theory of cellular automata: a survey. Theoretical Computer Science, 334(1):3–33, 2005.

[17]. A. L. Nelson, E. Grant, and T. C. Henderson. Evolution of neural controllers for competitive

game playing with teams of mobile robots. Robotics and Autonomous Systems, (46):135–150,

2004.

[18]. A. Pinter-Bartha, A. Sobe, and W. Elmenreich. Towards the light – Comparing evolved neural

network controllers and finite state machine controllers. In Proceedings of the Tenth

International Workshop on Intelligent Solutions in Embedded Systems, pages 83–87, Klagenfurt,

Austria, jul 2012.

[19]. J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das. A study of control parameters affecting

online performance of genetic algorithms for function optimization. In Proceedings of the third

international conference on Genetic algorithms, pages 51–60. Morgan Kaufmann Publishers

Inc., 1989.

[20]. M. Sipper, Y. Azaria, A. Hauptman, and Y. Shichel. Designing an evolutionary strategizing

machine for game playing and beyond. Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions, 37(4):583–593, 2007.

[21]. A. Sobe, I. Fehervari, and W. Elmenreich. FREVO: A tool for evolving and evaluating self-

organizing systems. In Proceedings of the 1st International Workshop on Evaluation for Self-

Adaptive and Self-Organizing Systems, Lyon, France, Sept. 2012.

[22]. K. Swingler. Applying Neural Networks: A Practical Guide. Morgan Kaufmann, pap/dsk edition,

5 1996.

[23]. M. Tomassini. Spatially structured evolutionary algorithms: artificial evolution in space and

time (natural computing series). Springer-Verlag New York, Inc., 2005.

[24]. M. Schuster, and K. Paliwal. Bidirectional recurrent neural networks. Signal Processing, IEEE

Transactions on 45, no. 11: 2673-2681, 1997.

[25]. R. Pascanu, T. Mikolov, Y. Bengio. On the difficulty of training recurrent neural networks. In

Proceedings of the 30 th International Conference on Machine Learning, Atlanta, Georgia, USA,

2013

http://dx.doi.org/10.14738/tmlai.26.783

